\(\int (d+e x)^{-3-2 p} (a^2+2 a b x+b^2 x^2)^p \, dx\) [1757]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 115 \[ \int (d+e x)^{-3-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p \, dx=\frac {b (a+b x) (d+e x)^{-1-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p}{2 (b d-a e)^2 (1+p) (1+2 p)}+\frac {(a+b x) (d+e x)^{-2 (1+p)} \left (a^2+2 a b x+b^2 x^2\right )^p}{2 (b d-a e) (1+p)} \]

[Out]

1/2*b*(b*x+a)*(e*x+d)^(-1-2*p)*(b^2*x^2+2*a*b*x+a^2)^p/(-a*e+b*d)^2/(p+1)/(1+2*p)+1/2*(b*x+a)*(b^2*x^2+2*a*b*x
+a^2)^p/(-a*e+b*d)/(p+1)/((e*x+d)^(2+2*p))

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {660, 47, 37} \[ \int (d+e x)^{-3-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p \, dx=\frac {b (a+b x) \left (a^2+2 a b x+b^2 x^2\right )^p (d+e x)^{-2 p-1}}{2 (p+1) (2 p+1) (b d-a e)^2}+\frac {(a+b x) \left (a^2+2 a b x+b^2 x^2\right )^p (d+e x)^{-2 (p+1)}}{2 (p+1) (b d-a e)} \]

[In]

Int[(d + e*x)^(-3 - 2*p)*(a^2 + 2*a*b*x + b^2*x^2)^p,x]

[Out]

(b*(a + b*x)*(d + e*x)^(-1 - 2*p)*(a^2 + 2*a*b*x + b^2*x^2)^p)/(2*(b*d - a*e)^2*(1 + p)*(1 + 2*p)) + ((a + b*x
)*(a^2 + 2*a*b*x + b^2*x^2)^p)/(2*(b*d - a*e)*(1 + p)*(d + e*x)^(2*(1 + p)))

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*(Simplify[m + n + 2]/((b*c - a*d)*(m + 1))), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 660

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(a + b*x + c*x^2)^Fra
cPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b,
 c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && NeQ[2*c*d - b*e, 0]

Rubi steps \begin{align*} \text {integral}& = \left (\left (a b+b^2 x\right )^{-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p\right ) \int \left (a b+b^2 x\right )^{2 p} (d+e x)^{-3-2 p} \, dx \\ & = \frac {(a+b x) (d+e x)^{-2 (1+p)} \left (a^2+2 a b x+b^2 x^2\right )^p}{2 (b d-a e) (1+p)}+\frac {\left (b \left (a b+b^2 x\right )^{-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p\right ) \int \left (a b+b^2 x\right )^{2 p} (d+e x)^{-2 (1+p)} \, dx}{2 (b d-a e) (1+p)} \\ & = \frac {b (a+b x) (d+e x)^{-1-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p}{2 (b d-a e)^2 (1+p) (1+2 p)}+\frac {(a+b x) (d+e x)^{-2 (1+p)} \left (a^2+2 a b x+b^2 x^2\right )^p}{2 (b d-a e) (1+p)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.63 \[ \int (d+e x)^{-3-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p \, dx=\frac {(a+b x) \left ((a+b x)^2\right )^p (d+e x)^{-2 (1+p)} (2 b d (1+p)-a e (1+2 p)+b e x)}{2 (b d-a e)^2 (1+p) (1+2 p)} \]

[In]

Integrate[(d + e*x)^(-3 - 2*p)*(a^2 + 2*a*b*x + b^2*x^2)^p,x]

[Out]

((a + b*x)*((a + b*x)^2)^p*(2*b*d*(1 + p) - a*e*(1 + 2*p) + b*e*x))/(2*(b*d - a*e)^2*(1 + p)*(1 + 2*p)*(d + e*
x)^(2*(1 + p)))

Maple [A] (verified)

Time = 2.47 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.21

method result size
gosper \(-\frac {\left (b x +a \right ) \left (e x +d \right )^{-2-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} \left (2 a e p -2 b d p -b e x +a e -2 b d \right )}{2 \left (2 a^{2} e^{2} p^{2}-4 a b d e \,p^{2}+2 b^{2} d^{2} p^{2}+3 a^{2} e^{2} p -6 a b d e p +3 b^{2} d^{2} p +a^{2} e^{2}-2 a b d e +b^{2} d^{2}\right )}\) \(139\)
parallelrisch \(\frac {x^{3} \left (e x +d \right )^{-3-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} b^{3} e^{3}-2 x^{2} \left (e x +d \right )^{-3-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} a \,b^{2} e^{3} p +2 x^{2} \left (e x +d \right )^{-3-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} b^{3} d \,e^{2} p +3 x^{2} \left (e x +d \right )^{-3-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} b^{3} d \,e^{2}-2 x \left (e x +d \right )^{-3-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} a^{2} b \,e^{3} p +2 x \left (e x +d \right )^{-3-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} b^{3} d^{2} e p -x \left (e x +d \right )^{-3-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} a^{2} b \,e^{3}+2 x \left (e x +d \right )^{-3-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} a \,b^{2} d \,e^{2}+2 x \left (e x +d \right )^{-3-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} b^{3} d^{2} e -2 \left (e x +d \right )^{-3-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} a^{2} b d \,e^{2} p +2 \left (e x +d \right )^{-3-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} a \,b^{2} d^{2} e p -\left (e x +d \right )^{-3-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} a^{2} b d \,e^{2}+2 \left (e x +d \right )^{-3-2 p} \left (b^{2} x^{2}+2 a b x +a^{2}\right )^{p} a \,b^{2} d^{2} e}{2 b e \left (2 a^{2} e^{2} p^{2}-4 a b d e \,p^{2}+2 b^{2} d^{2} p^{2}+3 a^{2} e^{2} p -6 a b d e p +3 b^{2} d^{2} p +a^{2} e^{2}-2 a b d e +b^{2} d^{2}\right )}\) \(609\)

[In]

int((e*x+d)^(-3-2*p)*(b^2*x^2+2*a*b*x+a^2)^p,x,method=_RETURNVERBOSE)

[Out]

-1/2*(b*x+a)*(e*x+d)^(-2-2*p)*(b^2*x^2+2*a*b*x+a^2)^p*(2*a*e*p-2*b*d*p-b*e*x+a*e-2*b*d)/(2*a^2*e^2*p^2-4*a*b*d
*e*p^2+2*b^2*d^2*p^2+3*a^2*e^2*p-6*a*b*d*e*p+3*b^2*d^2*p+a^2*e^2-2*a*b*d*e+b^2*d^2)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.90 \[ \int (d+e x)^{-3-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p \, dx=\frac {{\left (b^{2} e^{2} x^{3} + 2 \, a b d^{2} - a^{2} d e + {\left (3 \, b^{2} d e + 2 \, {\left (b^{2} d e - a b e^{2}\right )} p\right )} x^{2} + 2 \, {\left (a b d^{2} - a^{2} d e\right )} p + {\left (2 \, b^{2} d^{2} + 2 \, a b d e - a^{2} e^{2} + 2 \, {\left (b^{2} d^{2} - a^{2} e^{2}\right )} p\right )} x\right )} {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{p} {\left (e x + d\right )}^{-2 \, p - 3}}{2 \, {\left (b^{2} d^{2} - 2 \, a b d e + a^{2} e^{2} + 2 \, {\left (b^{2} d^{2} - 2 \, a b d e + a^{2} e^{2}\right )} p^{2} + 3 \, {\left (b^{2} d^{2} - 2 \, a b d e + a^{2} e^{2}\right )} p\right )}} \]

[In]

integrate((e*x+d)^(-3-2*p)*(b^2*x^2+2*a*b*x+a^2)^p,x, algorithm="fricas")

[Out]

1/2*(b^2*e^2*x^3 + 2*a*b*d^2 - a^2*d*e + (3*b^2*d*e + 2*(b^2*d*e - a*b*e^2)*p)*x^2 + 2*(a*b*d^2 - a^2*d*e)*p +
 (2*b^2*d^2 + 2*a*b*d*e - a^2*e^2 + 2*(b^2*d^2 - a^2*e^2)*p)*x)*(b^2*x^2 + 2*a*b*x + a^2)^p*(e*x + d)^(-2*p -
3)/(b^2*d^2 - 2*a*b*d*e + a^2*e^2 + 2*(b^2*d^2 - 2*a*b*d*e + a^2*e^2)*p^2 + 3*(b^2*d^2 - 2*a*b*d*e + a^2*e^2)*
p)

Sympy [F]

\[ \int (d+e x)^{-3-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p \, dx=\int \left (d + e x\right )^{- 2 p - 3} \left (\left (a + b x\right )^{2}\right )^{p}\, dx \]

[In]

integrate((e*x+d)**(-3-2*p)*(b**2*x**2+2*a*b*x+a**2)**p,x)

[Out]

Integral((d + e*x)**(-2*p - 3)*((a + b*x)**2)**p, x)

Maxima [F]

\[ \int (d+e x)^{-3-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p \, dx=\int { {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{p} {\left (e x + d\right )}^{-2 \, p - 3} \,d x } \]

[In]

integrate((e*x+d)^(-3-2*p)*(b^2*x^2+2*a*b*x+a^2)^p,x, algorithm="maxima")

[Out]

integrate((b^2*x^2 + 2*a*b*x + a^2)^p*(e*x + d)^(-2*p - 3), x)

Giac [F]

\[ \int (d+e x)^{-3-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p \, dx=\int { {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{p} {\left (e x + d\right )}^{-2 \, p - 3} \,d x } \]

[In]

integrate((e*x+d)^(-3-2*p)*(b^2*x^2+2*a*b*x+a^2)^p,x, algorithm="giac")

[Out]

integrate((b^2*x^2 + 2*a*b*x + a^2)^p*(e*x + d)^(-2*p - 3), x)

Mupad [B] (verification not implemented)

Time = 9.76 (sec) , antiderivative size = 259, normalized size of antiderivative = 2.25 \[ \int (d+e x)^{-3-2 p} \left (a^2+2 a b x+b^2 x^2\right )^p \, dx={\left (a^2+2\,a\,b\,x+b^2\,x^2\right )}^p\,\left (\frac {x\,\left (2\,b^2\,d^2-a^2\,e^2-2\,a^2\,e^2\,p+2\,b^2\,d^2\,p+2\,a\,b\,d\,e\right )}{2\,{\left (a\,e-b\,d\right )}^2\,{\left (d+e\,x\right )}^{2\,p+3}\,\left (2\,p^2+3\,p+1\right )}+\frac {b^2\,e^2\,x^3}{2\,{\left (a\,e-b\,d\right )}^2\,{\left (d+e\,x\right )}^{2\,p+3}\,\left (2\,p^2+3\,p+1\right )}-\frac {a\,d\,\left (a\,e-2\,b\,d+2\,a\,e\,p-2\,b\,d\,p\right )}{2\,{\left (a\,e-b\,d\right )}^2\,{\left (d+e\,x\right )}^{2\,p+3}\,\left (2\,p^2+3\,p+1\right )}+\frac {b\,e\,x^2\,\left (3\,b\,d-2\,a\,e\,p+2\,b\,d\,p\right )}{2\,{\left (a\,e-b\,d\right )}^2\,{\left (d+e\,x\right )}^{2\,p+3}\,\left (2\,p^2+3\,p+1\right )}\right ) \]

[In]

int((a^2 + b^2*x^2 + 2*a*b*x)^p/(d + e*x)^(2*p + 3),x)

[Out]

(a^2 + b^2*x^2 + 2*a*b*x)^p*((x*(2*b^2*d^2 - a^2*e^2 - 2*a^2*e^2*p + 2*b^2*d^2*p + 2*a*b*d*e))/(2*(a*e - b*d)^
2*(d + e*x)^(2*p + 3)*(3*p + 2*p^2 + 1)) + (b^2*e^2*x^3)/(2*(a*e - b*d)^2*(d + e*x)^(2*p + 3)*(3*p + 2*p^2 + 1
)) - (a*d*(a*e - 2*b*d + 2*a*e*p - 2*b*d*p))/(2*(a*e - b*d)^2*(d + e*x)^(2*p + 3)*(3*p + 2*p^2 + 1)) + (b*e*x^
2*(3*b*d - 2*a*e*p + 2*b*d*p))/(2*(a*e - b*d)^2*(d + e*x)^(2*p + 3)*(3*p + 2*p^2 + 1)))